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UCB W205 Asynchronous Curriculum Notes 

Kevin R. Crook 

Updated: 6/5/2017 

 

 

These notes are my personal notes that I made regarding the asynchronous curriculum to use to refresh 

myself before live classes.    

 

Please note that a lot of this should be considered my personal opinions, of which, you are free to agree or 

disagree.   

 

If you feel I have some misleading or incorrect information here, please feel free to let me know so I can make 

it better. 

 

I also emphasize some material more than others, which is totally subjective on my part to decide what I think 

is more important. 
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Unit 1 - Course Introduction and Architecture 

 

Hammerbacher, J, (2009), Information platforms and the rise of the data scientist.  In Beautiful data: the 

stories behind elegant data solutions. O’Reilly 

 

A chapter in the book detailing the history of information platforms and how we got to the data scientist.  Traces 

the roots of Data Science through the basic needs of a business (from the author’s first job at 17), to Business 

Intelligence Systems, to Data Warehousing (couple of rounds), to Big Data, to Data Science. 

 

Koister, J., (2015) Dimensions for characterizing analytics data processing solutions.  White paper for DATASCI 

W205. 

 

The author, Jari Koister, developed the curriculum for this course as you have seen him presenting in the 

asynchronous videos.  This paper lays the foundation work for the reference architectures and the dimensions 

introduced in this unit and used throughout this course.  It also helps to explain how everything we will be 

covering in this course fits together.  I would strongly recommend that you revisit this paper several times 

during this course.  As we learn detailed information, it’s good to come back and revisit how it all works 

together. 

 

Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques (3rd ed.).  Morgan Kaufman, 

Chapter 1, pp. 1–35. 

 
Introduces Data Mining, what it is and how it fits into KDD – Knowledge Discovery of Data.  Explains the types of 

data that can be mined, techniques to find patterns in data, what kinds of applications can benefit from data 

mining, and major issues with data mining.  

 

Patil, D.J., & Mason, H., (2015) Data driven: Creating a data culture 

 

This is an O’Reilly book about how to create a data driven organization.  More about with “soft skills” than “hard 

skills” (technical skills).   Good information to have as you may find yourself working in a Data Science group 

where part of your job may be to help the company transform itself into a data drive culture.  

 

Data-Driven Organizations - DDOs 

 

Make decisions on data not intuition.  More precise with what they want to achieve.  Measure and 

validate using data 

 

Some industries have been data driven: airlines, GE, etc. 

 

DDOs collect data, develop intuition for data, prose questions to answer, run experiments, make 

decisions, and draw insights 
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Reference Architecture 

 

We use reference architectures because there are a variety of solutions available, most architectures 

are best suited to specific uses, understand considerations and tradeoffs for the architectures 

Reference Model – provides a framework for comparing solutions 

 

Dimensions: Data 

 

Characteristics of data to consider: structure, size, sink latency, source latency, quality, completeness     

Structure: structured, unstructured, semi structured 

Size: S – MiB, M – GiB, L- TiB, XL - 100’s TiB, XXL – PiB 

Sink latency – velocity of data as it arrives 

Source latency – how quickly data are reflected in the indexing layer 

Quality – high, medium, low 

Completeness – incomplete (missing data we cannot complete), semi-complete (missing data but we 

can complete it), complete 

 

Dimensions: Processing 

 

Characteristics of processing to consider: selectivity, query time, aggregation, processing time, join, 

precision 

Selectivity – how much data you expect to process – high >20%, medium 20-80%, low - > 80% 

Query time (execution time) – expected query response time –  

short  ms, medium < 30 s, long minutes 

Aggregation – advanced (rollups, drill down, lattices, cuboids), medium (multiple dimensions),  

basic (simple counters) 

Processing time – short < 1 hr, medium < 12 hr, long < 24 hr 

Joins – advanced, basic, none 

Precision – exact, approximate, lossy 
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Unit 2 - Dimensions and Scaling: Understanding Trade-Offs 

 

Krishna, S., & Tse, E. (2013). Hadoop platform as a service in the cloud. Netflix blog post. 

 
Description of what is commonly called the “Netflix Architecture.”   They use AWS Elastic MapReduce (EMR) 

with S3.  Great explanation of how to effectively use S3 in conjunction with Hadoop instances on EMR using 

Elastic Block Storage (EBS).   Data are stored in S3 as the system of record, loaded from S3 into MapReduce jobs 

which uses HDFS on EBS, and the results are written out to S3.  Their “Genie” system was built in ho use to 

automate this. 

 

Mars, N., & Warren, J. (2015). Big data: Principles and best practices of scalable real-time data systems. 

Manning. Sections 1.4–1.10 . 

 
Describes the wish list of desired properties of a Big Data system: robustness, fault tolerance, low latency for 

reads and updates, scalability, generalization, extensibility, ad hoc queries, minimal maintenance, and debug 

ability.  Explains the problems with the fully incremental architectures (sometimes called Kappa Architectures) 

including an explanation for the CAP Theorem (aka Brewer’s Theorem) – Consistency / Availability / Partition 

Tolerance.  Explain the Lambda Architecture as a solution to most of these problems.  Describes the Lambda 

Architecture’s three main components:  the Speed Layer, the Batch Layer, and the Serving Layer.  Ends with 

recent trends in computer technology. 

 

Introduction: Data Size, Transfer 

 

Develop an intuition for data size.  

Examples of type of data and how to size using charts - Tweets, Credit Card transactions, emails, web 

logs 

Performance and Scale Bottlenecks - data size, network, storage, CPU, RAM 

IOPS – Input / Output Operations per Second 

Storage Performance – IOPS, Data Transfer Rate 

Network Performance – Bandwidth (bps max rate), Throughput (actual rate), Latency (delays) 

 

Introduction: Processing 

 

Processing – compute and/or assemble a result 

Computational Complexity – Ordo (Big O Notation) 

Constant f(1) – always takes same time 

Linear f(n) – example: twice as much data takes twice as much processing 

Logarithmic f(log n) – example: twice as much data takes longer but not twice as much 

Note that Log in computer science is base 2 not base 10 

Exponential f(2^poly(n)) – example: twice as much data might take ten times as much processing, 

thrice as much data might take a thousand times as much processing 
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Concepts: Data Scaling 

 

Scale Up – bigger computer in terms of RAM, CPUs, cores, etc. 

Scale Out – add more computers which are connected 

CAP Theorem – Brewer’s Theorem – Consistency – Availability – Partition Tolerance 

Horizontal Partitioning – Data Sharding – divide rows among nodes 

Vertical Partitioning – Columnar Database – store tables in column major order rather than row major 

order – helps when a table has a lot of columns and you only want to retrieve some of them. 

 

Concepts: Scaling Processing 

 

Use IOPS calculations to get a high level feel for what hardware we need and where bottlenecks will 

happen 

CPU Bound – calculation would go faster if CPU were faster –  

solutions: faster CPU, distribute to many CPUs, more cores, more threads, more efficient algorithms, 

reduce complexity. 

I/O Bound – calculation would go faster if I/O were faster –  

solutions: in-memory structures, in-memory databases, reduce data size to fit memory, SSD instead of 

HDD, local data, faster network, reduce number of IOPS needed. 

 

Architecture: Single Node vs. Distributed Storage 

 

Single Node – all storage attached to a single node 

Node Attached Block Storage, example: AWS EBS 

Distributed Storage – storage spread among multiple nodes connected by a network 

SAN – Storage Attached Network – 1K to 100K IOPS – highest cost 

NAS – Network Attached Storage – low IOPS – medium cost 

NFS – Network File System – very low IOPS – unpredictable performance – lowest cost 

Software Defined Storage – SWIFT – AWS S3 – sweet spots: low cost, throughput, high availability, 

capacity – weak spots: eventual consistency 

HDFS – Hadoop Distributed File System – nodes each with storage 

 

Architecture: Single Node vs Distributed Processing 

 

Single Node – simple, but can only scale up 

Parallel Computing – multiple processors or cores, shared storage layer 

Distributed Computing – scale out, multiple nodes, requires: message passing, coordination, 

scheduling, tolerates node failures 

Cluster Computing – uniform nodes, shared distributed storage, examples: Hadoop, Spark 

Grid Computing – distributed nodes, heterogeneous and physically separate nodes, examples: SETI, 

CERN, protein folding 
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Unit 3 - Structure and Organization 

 

Codd, E. F. (1970). A relational model of data for large shared data banks. ACM Information Retrieval, 13(6): 

377–387. 

 

A landmark theoretical paper, but dated at this point.  Codd invented the Relational Database to solve the 

problems of the databases of the 1960s.  The Relational Algebra and Relational Calculus formed the basis for the 

Structured Query Language (SQL) which has stood the test of time as the de facto standard.  The notation is 

archaic at this point – even today’s discrete mathematics no longer uses that notation.  

 

Chen, P. (1976). The entity relationship model—toward a unified view of SATA. ACM Transactions on Database 

Systems, 1(1): 9–36. 

 
A landmark theoretical paper, but dated at this point.  Chen invented the Entity-Relationship Diagram for Data 

Modeling still used today to model operational databases in 3NF (Third Normal Form).  The Chen notation is 

archaic at this point (no longer used). 

 

Proper, H. A. (1997). Data schema design as a schema evolution process. Data & Knowledge Engineering, 

22(2):159–189. 

 
A landmark theoretical paper, but dated at this point.  He proposes that data modeling should be a several step 

process.  This idea forms the customary data modeling process used today where we start with a Conceptional 

Data Model (CDM), to a Logical Data Model (LDM), to a Physical Data Model (PDM).    

 

It also planted the idea that forms the basis of what is today called Object-Relational Modeling usually using 

Unified Modeling Language (UML).   Relational Databases in 3NF have the advantage of no duplication of data, 

no modification anomalies, and ease to query using SQL.  However, Object Oriented programming in languages 

such as Java or C++ find converting between 3NF and Objects very cumbersome.  Based on the foundational 

ideas presented in this paper, today Object-Relational Modeling using UML allows us to bridge this gap and 

design abstraction layers.  

 

Structuring Data 

 

Unstructured Data – limits ability to understand and operate 

Naturally Structured Data – human language, requires a lot of computation to extract information 

Delimited Data – records encapsulate a set of details about facts, records can be mapped to tables: 

record = row, detail = column in a row 

 

Schema 

 

Schema – (dictionary) a representation of a plan or theory in the form of an outline or model 

(computers) a model we apply to data at storage or retrieval to: aid understanding, speed processing, 

save space, and enforce policy 
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Self-Describing Data – packing identifiers with data aids in accessing fields on demand 

Document-Object Models – DOM - examples: HTML, XML, JSON.  

Document = record, Attribute = detail 

Manifestations of Schema - Tables, Collections 

Tables – easy to access all values for single column or row, easier to treat numerically 

Collections – more amendable to mutation (regarding schema not data), easier to capture hierarchy in 

a record 

 

When is Schema Applied? 

 

Schema-on-Write – data stored only if they fit schema constraints  

Examples: Oracle, Microsoft SQL Server, Teradata, MySQL, PostgreSQL, etc. 

Pros: data guaranteed to be in format, speedy retrieval 

Cons: schemas must be defined before data stored, schema modification can be difficult and require 

re-organization of stored data, no multiple interpretations of data without duplicating data 

 

Schema-on-Read – data stored without constraint, schema applied on every read 

(read the data, apply schema, and validate) 

Pros: multiple interpretations of data, varying strictness of validation, schemas can mutate over time 

Cons: extremely slow, high cost to read and apply schema, no guarantee data will be in right format 

Examples: local disks on computer, Big Data Frameworks (Hadoop, Spark), NoSQL Databases 

(MongoDB, CouchDB) 

NoSQL may have self-describing schema – JSON, XML, Avro (binary format) 

Other Schema Encoding Interchange Formats: Google protobuf, MessagePack, Cap-n Proto,  

Parquet (large column oriented databases – we will use with Hive) 

 

Hybrid Approach – support both Schema-on-Write and Schema-on-Read 

Examples: BigTable: HBase, Cassandra, Hive (in Lab 3 we will do both to show the difference) 

 

Schema as Contract 

 

Schema Behavior as a Contract – contract between storage-retrieval system, systems writing data, 

systems reading data 

Examples: Warehousing Contracts, Transactional Contracts  

ACID – Atomicity, Consistency, Isolation, Durability 

BASE – Basically Available, Soft State, Eventual Consistency  

(BASE is not in this unit, but I mentioned it here because we mentioned ACID) 

 

Semantic Modeling 

 

Semantic Modeling - multiple datasets each with a schema - we need a way to manage this 

Semantic Modeling of a Business Process - model the real world as it exists in our data stores  

Entity-Relationship Models – Entity-Relationship Diagrams - ERDs – translate business processes into 

schemas 
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Entity – nouns – collection of records – become tables in the RDB 

Relationships – verbs – relationship between two entities (tables) – bi-directional – become Foreign 

Keys in the RDB – Foreign Key links to Primary Key – Arity (Cardinality) – Existence (Orphan Records) 

Identifying Relationship – FK is part of the PK 

Non-Identifying Relationship – FK is not part of the PK 

 

Crow’s Foot Notation 

Entity – rectangle – PK column(s) above line – non-key columns below the line - rounded corners 

means it has at least 1 identifying relationship 

0 (“oh”) = cardinality of zero, | (“pipe”) = cardinality of 1, crow’s foot = cardinality >1 (“many”) 

Minimum Cardinality = inside marks 

Maximum Cardinality = outside marks 

When both minimum and maximum cardinality are 1 we use a single | mark 

Business Rules – we speak the cardinality customarily in terms of maximum cardinality 

 

Physical Schema 

 

Entities – become tables 

Attributes – become columns 

Relationships – become FK 

Primary Key - PK – column(s) which uniquely identify a row 

Foreign Key – FK - links with a PK in another table 

Child Table has FK which links to PK in Parent Table – any table may be a parent any number of times 

and a child any number of times, even to the same table, even to itself 

Orphan Record – FK is NULL – row in child table with no matching row in parent table – only allowed if 

minimum cardinality is zero 

Normalization – remove duplication, remove modification anomalies  

Modification Anomalies – insertion anomaly, update anomaly, deletion anomaly 

Insertion Anomaly – occurs when extra columns values beyond target values must be added to a table 

Update Anomaly – occurs when it is necessary to change multiple rows to modify a single row 

Deletion Anomaly – occurs whenever deleting a row inadvertently causes other data to be deleted 

Normal Forms – rules about allowable dependencies that prevent the modification anomalies – each 

normal form is a superset of lower normal forms 

1NF – First Normal Form – attribute domain atomicity –  

industry slang: “no repeating groups of columns” 

2NF – Second Normal Form – 1NF and if and only if nonprime attributes aren’t part of the PK – 

industry slang: “no repeating groups of rows” 

3NF – Third Normal Form – 2NF and if and only if attributes are determined only by the PK –  

industry slang: “nothing but the key” 

Memory Aid:  A database is in 3NF, if and only if every non-key attribute is dependent on the key, the 

whole key, and nothing but the key, so help me Codd 

Higher Normal Forms: BCNF (Boyce-Codd Normal Form aka 3.5NF), 4NF (Fourth Normal Form), 5NF 

(Fifth Normal Form aka PJ/NF Project Join Normal Form), DKNY (Domain Key Normal Form) 
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Unit 4 - Data Lakes: Storage and Maintenance 

 

Ghemawat, S., Gobioff, H., & Leung, S. (2003). The Google file system. SOSP’03, October 19–22, Bolton 

Landing, New York, USA. 

 

In this landmark paper from 2003, the Google file system (GFS) is presented.  It is the precursor to the modern 

open source Hadoop Distributed Files System (HDFS) that we are using in this course.  It’s interesting to read 

about the original design of GFS and what went into consideration, but keep in mind that HDFS is  more modern 

and has differences.  

 

Kreps, J. (2013). The log: What every software engineer should know about real-time data's unifying 

abstraction. LinkedIn blog. 

 
For many years, most software systems had logs, but only during the dot com boom of the late 1990s did 

companies start analyzing their web logs to piece together information about what visitors were doing on visits 

to their websites.  For the first few years the analysis was rudimentary, but in the late 2000s, as Data Science 

was coming of age, the sophistication of web log analytics was reaching a high level.  Web logs come at an 

extremely high velocity and volume, so Big Data architectures were being used to load and analyze them.  A lot 

was learned from this architecture.  This paper describes how to take what was learned in processing web logs 

and apply it to other areas, especially traditional data warehousing and the modern data lake architecture.   It is 

the precursor to the ideas we will be using in this course:  ELT instead of ETL, Schema-on-Read instead of or in 

addition to Schema-on-Write, and immutability, all of which help form the architecture of the data lake.  

 

What is a Data Lake? 

 

Data Warehouse – a repository of data collected from multiple data sources, stored under a unified 

schema and residing in a central place, Scale Out SQL, Dimensional Modeling (Star Schema, Snowflake, 

etc) instead of 3NF, early 1990’s 

Characteristics: data transformed to defined schema, loaded when usage defined, allows for quick 

response for defined queries 

Vendors: Teradata, IBM Netezza, HP Vertica, AWS RedShift 

 

Data Lake – a storage repository that holds a vast amount of raw data in their native formation until 

they are needed, analogy is a lake holds unpurified water for a city supply until it’s needed and purified 

Characteristics: many data sources, retain all data, allows for exploration, apply transforms as needed, 

apply schema as needed 

Vendors: Hadoop (Cloudera, Hortonworks, MapR), AWS Elastic MapReduce (EMR), Teradata Aster 

 

High-Level Architectures 

 

Elements of an Analytics Architecture: collect / ingest data; store raw data; clean & transform data; 

query data; compute, join, aggregate data; analyze & report 

(see diagrams in slides) 

Data Warehouse Architecture: operational systems, ERP, CRM, flat files => ETL (extract transform load) 

=> Data Warehouse (metadata, summary data, raw data) => OLAP analytics, reporting, data mining  
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Lambda Architecture: Speed Layer, Batch Layer, Serving Layer 

Kappa Architecture: no Batch Layer 

Speed Layer: quick analytics on streaming data, “knee jerk decision”,  

Examples: Storm, Twitter Heron, Spark Streaming 

Batch Layer: store streaming data for deeper analytics at a later time, allows us to evaluate & improve 

decisions made in the Speed Layer   

Examples: Hadoop, Spark 

Serving Layer: presentation of data via queries, reports, apps, etc. 

Netflix Architecture: S3 => AWS Elastic MapReduce (EMR) => analytics results back to S3,  

controlled by “Genie” (Hadoop Platform as a Service) 

 

Data Characteristics 

 

Online Transaction Processing – OLTP – system and approach that facilitate and manager transaction-

oriented applications, typically for data entry and retrieval-transactions, CRUD (create, read, update, 

delete) transactions, frequent updates 

Online Analytics Processing – OLAP – system and approach to answering multidimensional analytical 

queries quickly, aggregations, drill-downs, roll-ups 

Data Warehouse Model – Master Data (dimension table) Transaction Data (fact table), Analytics Data 

(Cuboid)  

Dimensional Modeling – different from 3NF, Star Schema, Snowflake Schema, (see slides) 

Big Data Architecture – Master Data (fact-based, immutable dimensions), Transaction Data (log items), 

Analytics Data (aggregates, roll-ups) 

 

Mapping to Data Architectures 

 

See slide diagrams which show the Lambda Architecture, Traditional Business Data Warehouse, and 

Kappa Architecture and how the data characteristics discussed in the previous section map  

 

Mapping to Data Architectures: NoSQL and HDFS 

 

HDFS - Hadoop Distributed File System – presents like a local file system, distribution mechanics 

handled automatically 

See slide diagrams for how HDFS works 

Uses: popular bulk data store, many large files where file size > block size, agnostic to file content, 

good as immutable data store, good for parallel reads of lots of blocks, bad for small, specific reads, 

bad for fast writes 

 

NoSQL - Not Only SQL – typically stores records as Key-Value Pairs, distribution mechanics tied to 

record keys 

See slide diagrams for how Key-Value Stores work 

Vendors: Redis, BerkeleyDB, MongoDB, Cassandra (column-families imposed on value) 

Uses: good for fast, key-based access, good for fast writes, bad for off key access, complicated for 

merging datasets 
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Mapping to Data Architectures: Relational / Columnar 

 

Two kinds of Database Management Systems – DBMS – Relational Databases – RDB – Columnar 

Databases – CDB 

Relational Databases – RDB (or RDBMS) – present via declarative query languages, organize 

underlying storage row-wise (sometime column-wise) 

Records are stored a tables – schema validate on write, typically indexed 

Records may be persisted (row-wise, column-wise) 

Additional structures can be applied to enhance access: secondary indices, materialized views, stored 

procedures 

Uses: most common data storage and retrieval system, many drivers, declarative language (SQL); good 

for fast inserts, good for (some) fast reads, good for sharing data among applications, limited schema -

on-read support, can be costly or difficult to scale 

Columnar Databases – CDB – organize underlying storage column-wise, present via API and declarative 

query languages 

Records stored as tables 

Largely for analytical workloads (read mostly, bulk insertion) 

Additional access structures 

Presumption: more likely to read all values of a column, optimized storage for fast column retrieval 

Uses: optimized for analytical workloads, maintains relational data model, good for analytical 

operations, good for horizontal scaling, bad for fast writes, bad for fast row-wise reads 

 

Mapping to Data Architectures: Software-Defined Object Storage (Swift, S3) 

 

Object Storage – data are managed as one large logical object: consists of data and metadata, has 

unique identifier across system; data are an uninterpreted set of bytes  

Software-Defined Storage – data replication for resilience for high availability (HA); stores anything; 

runs on commodity hardware; manages data automatically, blocks hidden 

Solution: simplified model for managing data growth; lowers management cost; lowers hardware cost; 

meets resiliency and HA needs and lower cost 

How it works: simple API with object abstraction; data are partitioned & partitions replicated; software 

layer manages replication & data placement; software layer will automatically redistribute in case of 

expansion, contraction, or failure 

Uses: when storing an object does not require indexed access; HA, scale, cost are key; “looser” 

consistency is acceptable 

Vendors:  OpenStack Swift (open source, Nasa & Rackspace); AWS S3; Oracle Storage Services; Google 

Cloud Storage; Windows Azur Storage; Rackspace Files 

 

(next)  
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Management, Provenance, Governance 

 

Lineage (Data Lineage) – data’s origins and where it moves over time; tracked with either tools or 

manually 

Provenance (Data Provenance) – documents the inputs, entities, systems, and processes that 

influence data of interest; provides a historical record of data and its origins; lineage, correctness of 

source, what has been manipulated or compromised, whether calculations comply, etc. 

Governance (Data Governance) – control that ensures that the data meets precise standards;  

standards can be internal controls, such as business rules, or external controls such as  industry 

standards or government regulations: SOX (Sarbanes-Oxley Act), PCI (Payment Card Industry), HIPAA 

(Health Insurance Portability and Accountability Act), FERPA (Family Educational Rights and Privacy 

Act), ADA (Americans with Disabilities Act), GAAP (Generally Accepted Accounting Principles)  
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Unit 5 - Data Ingestion: Storage and Maintenance 

 

Vassiliadis, P. (2009). A survey of extract–transform–load technology. International Journal of Data 

Warehousing & Mining, 5(3), 1–27. 

 

As the title suggests, this paper from 2009 is a survey of the ETL (Extract, Transform, Load) technologies.  It first 

covers the conceptional and logical modeling of ETL processes (which saw the need in the last unit for a division 

between CDM, LDM, and PDM).  It then goes through issues with each of extract, transform, and load and then 

problems of the ETL process as a whole.  This paper is not specific to Big Data, it also covers the area of 

traditional Business Data Warehousing.  For Big Data related items, I think the most relevant sections are: 

Pivoting Problem, Data Mappers, Data Lineage Problem, Data Cleaning, Resumption Problem, Near-Real-Time 

ETL.  

 

Kreps, J. et al. (2011). Kafka: A distributed messaging system for log processing. NetDB'11, Athens, Greece. 

ACM 978-1-4503-0652-2/11/06. 

 

As the title suggest, this paper covers Kafka.  Kafka is a scale out (distributed) architecture to process messages.  

The article highlights its ability to consume streaming logs, but it can also work with MQ (Message Queue) 

products.  Over the last 15 years or so, most Fortune 500 companies have implemented extensive MQ 

implementations, usually using Tibco, IBM MQ, or MS MQ.  These are designed on the producer / consumer 

model of messaging with messages organized into topic and recursive subtopics with guaranteed message 

delivery.  Kafka is often placed in front of other streaming systems, such as Storm, Heron, or Spark Streaming, 

because it can scale out and handle huge volumes of incoming messages.  

 

Introduction: Data Ingestion / Loading 

 

Needs of Data Analytics – pyramid – basic needs => understanding needs => predictive needs 

Common Problems: many data sources (SQL, NoSQL, streams, logs), many data transport protocols 

(HTTP, JDBC, REST, proprietary), different type of data bundles (full, incremental, changes), ingest for 

different data processes (batch, streaming) 

Many Sources – many schemas 

Network – reliability, fault tolerance, bottlenecks, bursts 

Data Bundles – many semantics 

 

Traditional ETL / ELT 

 

ETL – Extract, Transform, Load – traditional for business data warehousing, we take the hit at ETL time 

to make analytics time faster  

ELT – Extract, Load, Transform – new for Big Data, we assume a more powerful target system, more 

flexibility at later stages 

 

Ingesting of High-Velocity Logs 

 

Large amount of data, TiBs daily, both online and offline processing (Lambda Architecture)  

Vendors: Karka, Amazon Kinesis, S4, Storm, Samza 
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Kafka – messaging API, stores many messages for long periods, scales out (distributed), designed for 

large datasets, allows clients to read in different orders - scalability, network bottlenecks, consumer 

bottlenecks, bursts, reliability, fault tolerance – topology of producer / consumer – topic oriented, 

consumers can subscribe to topics (or recursive subtopics) – messages saved and replayed – MQ 

integration 

 

Big Data Ingest: Logs and ETL 

 

LinkedIn Gobblin – example of ETL to ingest logs 

Source integration – out-of-the-box adaptors for data sources such as Salesforce, MySQL, Google, 

Kafka, Databus 

Processing paradigm – support both standalone and scalable platforms, such as Hadoop and Yarn 

Data quality assurance – framework exposes data metrics collectors and data quality checkers as first-

class citizens 

Extensibility – data pipeline developers can integrate their own adaptors  

Self-service – data pipeline developers can compose ingestion and transformation flow 

 

Moving Large Data Sets 

 

Considerations – parallelism, kind of source, kind of sink, network bandwidth usage, different formats, 

different structures, long move times, handling failures  

Performance Measures – bandwidth (max xfer rate), throughput (actual xfer rate), latency (delays 

between sender and receiver), jitter (variation in time of arrival at the receiver), error rate (percentage 

of corrupt bits) 

Tools – Sqoop, distcp2, rsynch 

Sqoop – xfer RDBMS (SQL) and Data Warehouses to Hadoop – limited parallelism – specific to SQL – 

limited recovery for failures 

rsynch – FS (file system) to FS copy or synchronization – old – reliable – not parallel – efficient use of 

network – agnostic to file content – no recovery for failures, must restart 

distcp2 – HDFS or S3 to HDFS copy – high parallelism – agnostic to file content – handles failure well 

using standard MapReduce recovery 
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Unit 6 – Data Processing and Aggregation 

 

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010). Spark: Cluster computing with 

working sets. HotCloud. 

 

A Berkeley paper - as the title implies, this paper is about Spark.  Spark was designed to process in memory using 

what is called RDDs (Resilient Distributed Datasets) and use a form of MapReduce that is not limited to chaining 

the Hadoop style MapReduce implementations.  Obviously, this allows iterative job streams to process many 

times faster, which they point out is especially helpful for interactive analytics.  It described the operations of 

Spark, such as parallelize, flatMap, map, filter, reduce, collect, foreach, etc. and explains how these are used to 

overcome limitations of chained MapReduce jobs.   It gives practical examples of a text search, and machine 

learning algorithms logistic regression and alternative least squares, both of which benefit greatly from the 

architecture because they iterate over the same data numerous times.  It also describes that Spark is designed 

to be able to run both inside Hadoop and independently of Hadoop (including using Mesos a cluster operating 

system).   The importance of lineage (provenance) and how it was designed into Spark is discussed at several key 

points. 

 

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of 

the ACM, 51(1):107–113. 

 
A 2004 paper from Google that described MapReduce as a simplified way to do data processing on large 

clusters.  This information is a bit dated at this point, as there have been improvements to MapReduce since 

then and newer implementations of MapReduce such as Spark.  But, it does give you the initial design details 

and considerations that went into building the original version of MapReduce.   Their choice of algorithms is very 

telling as to why it was needed as it maximizes such things are word counts, sorting, aggregating counts, greps, 

skipping bad records, large scale indexing, etc. – all things needed for Google’s work on indexing the entire 

Internet at scale.  Fault tolerance and recovery from failures were also of high importance.  

 

Introduction: Processing 

 

Type of Processing Operations – filter, mutate, aggregate, combine or merge 

Filter – exclude some records from the set – selection (filter rows) – projection (filter columns) 

Mutate – for each record in a set, produce a new record based on some transaction 

Aggregate – combine records in a dataset to produce an aggregated feature – sum, count, average, 

etc. 

Merge – merge records from two datasets into a new record based on some condition – special case of 

aggregation – inner join, left (right) outer join, Cartesian Product, etc. 

 

Methods of Processing 

 

Serial Processing – process records one at a time in order read – similar to procedural programming – 

not efficient – no scale out – disk I/O costs dwarf memory costs, heavy use of disk seeks  

Declarative / Functional – Functionally Drive Processing – logically consistent with serialized 

processing – reads and processes batches of records – applies functions to batches – scale out: 

multiple threads, multiple computers 
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Functional in Parallelism 

 

Function passing – makes scale out easier – immutable data, portable closures – dual of the actor 

model 

Vendors:  scale out SQL, Hadoop, Spark 

Common Operators: filter, map, flatMap, reduce, fold 

filter – filter the collection such that only some set of records pass  

map – apply the function f(x) to all members of x in the collection 

flatMap – flatten the collection and apply f(x) to all resulting members  

reduce – apply aggregating function f(x,y) to all members of the collection 

fold – apply aggregating function f(x,y) to all members and store the result in a variable g 

 

Processing in Stages 

 

Break down processing into stages – complex processing broken down into smaller stages – DAG 

(Directed Acyclic Graph) is a plan for process (we used DAGs with SQL execution plans) – DAGs allow 

for optimization and fault tolerance, but present new complexities such as merging datasets  

MapReduce – Map (filter data, mutate data, merge data under certain conditions) – Reduce (filter 

data, aggregate data, merge data) 

“generic” MapReduce - a logical concept, chaining of two functions, exists in many languages (Python, 

Ruby, Scala) 

Hadoop MapReduce – specific implementation – data-processing framework (distributed system, 

designed for massive data processing) – Read Data => Map => Reduce => Write Data 

MapReduce limitations – program can only map and reduce between I/Os – have to chain MapReduce 

jobs for iterative, merge, or aggregate operations – read data in and out more than once 

MapReduce => checkpoint => MapReduce => checkpoint => etc. - checkpoint requires I/O and data 

cannot be kept in memory for the next MapReduce job – good for fault tolerance – bad for 

performance 

DAG – Directed Acyclic Graph – directed (operations flow one way) – acyclic (no cycles – no 

dependencies on future steps) – enables dataflow processing (data enters node, date leaves node) 

Logical plan – separate from physical plan (choice of algorithm) 

Optimized – control checkpoints – mover operators around to minimize data xfer 

Distributed – some nodes occur at each member of the system – some nodes gather data from other 

members (shuffling) 

Examples: Pig (declarative dataflow language that transforms to Hadoop MapReduce as either a Map 

or a Reduce), Tez (extension of Hadoop MapReduce to more generic DAG – removes checkpoints 

between MapReduce iternations), Spark (memory-centric dataflow framework built on functional 

operators), Scale Out SQL (execution plans in trees as special case of DAGs) 

How to Optimize Dag – minimize materialization (read minimum amount of data necessary, filter data  

as early as possible, write data as late as possible), minimize data shipping (passing data between 

processes is expensive – serialization - shared memory or network transfer, minimize the number and 

size of shuffles – use combiners aka partial aggregation) 
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Understanding Aggregation 

 

Important – how two datasets relate to each other, statistics about dataset (mean, median, variance, 

min/max, etc.) 

Problems at scale – shuffles required (data shipping overhead) 

Partitioning – highly dependent on partitioning – aggregations on multiple partitions must shuffle – 

merges on disparate partitions must be shuffled 

Partial Aggregation – combiners – pre-aggregate – reduce shuffle overhead 

Merging and Data Skew – partitions being joined are of uneven sizes 

Solutions: Broadcast Join – copy the small partition out to the nodes, Pre-filtering – filter the large 

partitions before merging with the small partitions 
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Unit 7 – Querying Data 

 

Graefe, G. (1993). Query evaluation techniques for large databases. ACM Computing Surveys (CSUR), 25(2): 

73–169. 

 

This is a long paper from 1993, over 90 pages, which is comprehensive over all major issues regarding how to 

take a query and create an execution plan.  It starts with presenting how to structure DAGs.  It covers various 

methods of sorting and hashing, and the appropriate uses and tradeoffs.  Disk access techniques are presented, 

although much of this is dated at this point due to modern storage architectures.  Aggregation, duplicate 

removal, and binary matching techniques are presented, which are still in widespread use today.  The last half of 

the paper deals with parallel query execution plans, which I think the MapReduce material in this course 

supersedes.  

 

Chaudhuri, S. (1998). An overview of query optimization in relational systems. Proceedings of the 17th ACM 

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. 

 

This paper from 1998 provides the foundation for the modern cost based optimizer.  Before cost based 

optimizers, we used rule based optimization.  Rule based optimizers looked at the basics such as the table 

structure, the joins in the query, what indices are present, etc. and made a decision without regard to examining 

the actual data sizing and characteristics.  Cost based optimizers gather statistics on tables, indices, IOPS of 

various hardware components, etc., and then generate a list of execution plans and computer a cost for each 

execution plan.  The execution plan with the lowest cost is selected.  Note that as data is added, statistics 

change and have to be gathered on a regular basis. 

 

Stonebraker, M. et al. (2005). C-store: A column-oriented DBMS. Proceedings of the 31st International 

Conference on Very Large Databases. VLDB Endowment. 

 

This paper from 2005 proposed a database in which tables are essentially stored in column major order instead 

of row major order.  Today, it’s called vertical partitioning or a columnar database.   In support of this, it 

outlines:  shared nothing architecture (scale out), how the query execution DAGs would be  different, why 

compacting storage is better using columns instead of rows, how indices need to be different, how to perform 

distributed transactions without traditional logs and two-phase commit, and how to isolate queries. 

 

Review: Schema, RDBMS, and DAGs 

 

Schema – (dictionary) a representation of a plan or theory in the form of an outline or model 

(computers) a model we apply to data at storage or retrieval to: aid understanding, speed processing, 

save space, and enforce policy 

We apply schema at the dataset level.  >1 data set, we use an ERD to  

Entity-Relationship Models – Entity-Relationship Diagrams - ERDs – translate business processes into 

multiple schemas 

Entity – nouns – collection of records – become tables in the RDB 

Relationships – verbs – relationship between two entities (tables) – bi-directional – become Foreign 

Keys in the RDB – Foreign Key links to Primary Key – Arity (Cardinality) – Existence (Orphan Records) 

Identifying Relationship – FK is part of the PK 

Non-Identifying Relationship – FK is not part of the PK 
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Crow’s Foot Notation 

Entity – rectangle – PK column(s) above line – non-key columns below the line - rounded corners 

means it has at least 1 identifying relationship 

0 (“oh”) = cardinality of zero, | (“pipe”) = cardinality of 1, crow’s foot = cardinality >1 (“many”) 

Minimum Cardinality = inside marks 

Maximum Cardinality = outside marks 

When both minimum and maximum cardinality are 1 we use a single | mark 

Business Rules – we speak the cardinality customarily in terms of maximum cardinality 

 

Review the ERDs from the slides for 7.3 (slides 14 through 20) 

 

DAGs – Directed Acyclic Graphs -  

Graph – collection of vertices and edges 

Directed Graph – edges have a direction  

DAG – a Directed Graph with no cycles – in computer science used in multi-processing to show: the 

processes, which processes must complete before a process can run, which processes can run at the 

same time.  Database queries are translated into execution plans in the form of DAGs  

 

Motivation for Declarative Languages 

 

How to get from Query to DAG:   1) procedural language 2) declarative language 

Procedural Language – specify step by step execution path – “how” – loops –  

examples: Python, Java, C++, Javascript.  Pros: complete control, Cons: more work and responsibility 

Declarative Language – aka Functional Language – specify “what” not “how” – no loops –  

examples: SQL, HTML, Regular Expressions, Rails Pros: less work, Cons: lack of control 

Best of both worlds:  often design outer layer that is Procedural (Python) with an inner layer that is 

Declarative (SQL).  Do as much as you can in SQL, use Python when you need a loop or other 

procedural structure or “glue”.   

Oracle PL/SQL is an example a language system designed for this exact purpose.  

 

Structured Query Language (SQL) 

 

SQL - declarative language – de facto standard query language for RDB – stood test of time 

Optimizer – generates execution plans for SQL – implements the declarative language into procedural 

using DAGs 

Lab 5 - examples of PostgreSQL – generate execution plans (DAGs) for the SQL  

 

Joins 

 

FK in child table links with PK in parent table – ERD shows us how to do this – always consult ERD 

before writing SQL with joins 

Joins: Inner, Outer (left, right, full), Cross (Cartesian Product) 

Inner Join: only FK to PK matches 
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Outer Join:  FK to PK matches, left – adds non-matching rows in left table – right adds non-matching 

rows in the right table (seldom used) - full adds non-matching rows in both left and right 

Cross (Cartesian Product) – rows don’t match FK to PK 

Implementations: Nested-loop, Sort-merge, Hash 

 

Analytical SQL and Windows 

 

Time-series – today minus yesterday 

Rolling sums – yesterday plus today 

Ranking rows – whole table or by partition 

 

Indexes (Indices?) 

 

Indexes – physical data structures we create to make retrieval faster – but slower insertions and use 

space 

B+ Tree – most common index – similar to binary tree data structures you coded in the Python class  

Bitmap Index – low cardinality of values – example: 1 million customer of 5 types 

Hash Index – retrieve 1 row by a unique key value 

 

View / Partitions 

 

View – virtual table based on an SQL select statement – no space – CREATE my_view as SELECT … 

Hide complex logic such as joins – subsets of tables – security – encryption layer 

Materialized View – caches query results – uses space – defined refresh rate 

Partition (horizontal) – divide rows by a List of values, Range of values, Hash 

 

Approximate SQL 

 

Approximate SQL - Table may be too large to query and a sample of data may yield meaningful 

analytical value 

Data Sketching – query counts, groupings, minimums, maximums, averages, etc. 

Uniform and Stratified Sampling - obtain sample of data that represents the entire data using a 

combination of taking a uniform sample and reducing it by stratification  

Uniform Sample – pull a uniform number of random records, example: every 10th record 

Stratified Sample – pull a sample that proportionally matches the data,  

example: if 25% of our customers are male and between 15 and 25 make sure 25% of our sample is 

male and between 15 and 25 
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Unit 8 – Exploring Data 

 

Stevens, S. S. (1946). On theory of scales and measurement. Science, 103(2684). 

 
A scientific paper from 1946, before electronic computers, discussing scales for measurement, which are the 

same ones in use today and used in the videos / slides for this unit: nominal, ordinal, interval, and ratio.  

Nominal scale allows determination of equality.  Ordinal scale allows determination of greater or less. Interval 

scale allows determination of equality of intervals or differences.  Ratio scale allows determination of equality of 

ratios.  For each scale, a set of permissible statistics is listed.   

 

Tukey, J. W. (1980). We need both exploratory and confirmatory. The American Statistician, 34(1): 23–25. 

 

In this paper from 1980, a statistics professor makes a case that universities at the time were currently teaching 

only Confirmatory Data Analysis (CDA) and not Exploratory Data Analysis (EDA).  CDA is based on the traditional 

scientific method of making a hypothesis and using data and statistics to prove or disprove it.  He describes EDA 

as “an attitude … AND a flexibility… AND some graph paper…”  to use statistics.  The “graph paper” today would 

be called data visualization.  He closes by stressing that results from EDA should be confirmed with CDA – that 

both are needed.   

 

Melnik, S., Gubarev, A., Long, J. J., Romer, G., Shivakumar, S., Tolton, M., & Vassilakis, T., (2010).  

Dremel: Interactive analysis of web-scale datasets. Proceedings of the VLDB Endowment, 3(1). 

 
This paper from 2010 describes Google’s internal software systems called Dremel which they release d in 2014 as 

open source Apache Drill.  Dremel scales and excels at very large datasets (> trillion rows) using a nested tree 

columnar data storage structure.  It is especially well suited for nested dataset formats such as JSON.  The paper 

covers the details of the nested columnar storage format, the query language and execution plans, how 

execution trees that are commonly used in web search engines can be applied to database schema, and results 

of experiments of running queries on trillion row datasets.  It can be used with MapReduce with either feeding 

data to the other.  It can also read and process JSON files in S3, which I find very interesting. 

 

Introduction to Data Discovery 

 

• Data Discovery 

o Data Characteristics – what are the distribution and ranges? How big are the data? What are 

the missing values? Are there outliers? Are data skewed? What are the type, scale, and 

measures? 

o Insights 

▪ Exploratory Analysis – EDA – explore data, look for new insights  

• Structure Learning 

• Faceted Search 

• Visualization 

• Pattern Detection 

• Query and Filter 

▪ Confirmatory Analysis – CDA – define a hypothesis, try to prove or disprove it 

• Statistical Analysis 
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Understanding Your Data 

 

Categorical variable – a variable that can take on one of a limited number of possible values, thus 

assigning each individual to a particular category 

Quantative / Continuous Data – data where the values can change continuously, and you cannot 

count the number of different values 

Type of Data / Variables – Binary (nominal scale), categorical (nominal scale), ordinal (ordinal scale), 

absolute (count, ratio scale), real-valued (additive, interval scale), real-valued (multiplicative, ratio 

scale) 

Scales – nominal, ordinal, interval, ratio  

Managing Missing Value (Imputation) – data deletion (delete the record), hot-deck imputation 

(replace with last value seen), mean imputation (replace with the mean), median imputation (replace 

with the mean), class imputation (use class mean or median), “most probable” imputation (use 

regression or inference to predict likely value) 

 

Exploratory Data Analysis – EDA 

 

Inductive – look for ways to examine data without preconceptions, evaluate assumptions, use data 

visualizations, let data suggest questions, focus on indications and approximate error magnitudes  

Advantages – flexible way to generate hypothesis, more realistic statements of accuracy, does not 

require more data than data can support, promotes deeper understanding of processes 

Disadvantages – usually does not provide definitive answers, difficult to avoid optimistic bias produced 

by overfitting, requires judgement and artistry – can’t be cook booked 

Search – relevance, precision / recall, taxonomies, ontologies, ranking 

Faceted Search – technique for accessing information organized according to a faceted classification 

system, allowing users to explore a collection of information by applying multiple filters  

Parametric Search – Boolean interface for combining faceted content using AND / OR combinations 

Faceted Classification – uses a set of semantically cohesive categories that are combined as needed to 

create an expression of a concept, in this way, it is unlimited in the concepts it can express  (what kind 

of wine are you looking for?) 

Faceted Search – facets + text search (narrow selection by clicking on web links) 

SQL – obviously good to use for exploring data by query 

Data Cubes – facts (quantitative data) inside the cube, dimensions (measures) go on edges, drill up, 

drill down, roll up, slicing, dicing, pivot, etc. 

Big Data Examples: Hive, Spark SQL, BigQuery, BlinkDB, Impala, AWS Redshift, etc. 

 

Visualization and Its Realization 

 

Slides have various examples of data visualizations: bar charts, histograms, scatterplot, boxplot, 

geomap, bubble chart, parallel coordinates, Gantt chart, stream graph, etc. 

Vendors: Oracle Big Data Discovery, Tableau 

 

Confirmatory Data Analysis - CDA 
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Statistical CDA – state null hypothesis => state alternative hypothesis => set alpha (significance level) 

=> collect data => calculate a test statistic => construct acceptance / rejection criteria => draw 

conclusion on hypothesis 

Basic CDA – state question => hypothesis => query data => analyze results  

 

Sampling, Enriching, Merging 

 

Sampling for discovery – way to manage very large datasets, can provide for faster and more 

interactive handling, allows exploration of datasets whose complete form is unmanageable on a 

platform 

Basic Sampling – Set D contains N tuples; sample size is s 

Simple random sample without replacement - draw s of N tuples with probability of 1/N 

Simple random sample with replacement - previous, but put tuples back in for possible redraw 

Cluster sampling - D divided in M disjoint groups; apply SRS at cluster level 

Stratified sampling - previous, but apply SRS at the tuples level proportional to cluster size 

BlinkDB – scale out SQL with approximate query engine for running SQL on large volumes of data 

trading off query accuracy for response time with meaningful error bars  

Transformation – get data to right type and form, calculate derived data, split data 

Enrichment – from another data source, add information that is valuable on discovery such as table 

join or lookup from external source 

 

Clustering 

 

Segmentation [DEFINE LABELS] - user defines the border between segments, examples: gender, age, 

income range 

Clustering [DISCOVERY LABELS] – algorithmically detect groupings based on some features, examples: 

find clusters and their defining features 

Classification [GROUP TO KNOWN LABELS] – bucket items on some predefined set of attributes 

Cluster Analysis – the activity of finding clusters and their defining attributes  

Clustering Techniques – different characteristics and limitations – some expect a guess of number of 

clusters; some are nondeterministic; some do not scale well 

Implementations – R (hierarchical agglomerative, K-means), Spark-MLlib (K-means), Mahout (K-means) 

Storage and Computing Needs – very computationally intensive; sometimes hard to distribute; difficult 

to make interactive 

 

Classification 

 

Classification [GROUP TO KNOWN LABELS] – bucket items on some predefined set of attributes – 

understand the structure of the data, use for decision making, score new incoming data  

Implementations – Decision Trees (R, MLlib, Weka), Rule Based (R, Mahout, MLlib), Support Vector 

Machines (R, MLlib, Weka), Naïve Bayes (R, Mahout, MLlib, Weka) 
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Unit 9 – Streaming Data 

 

Toshniwal, A. et al. (2014). Storm@Twitter. Proceedings of SIGMOD Conference. 

 

This first paper from 2014, describes how Storm was being used at Twitter at the time, and mentions 

that Storm is growing in use at Twitter, which is understandable given that they produce GiB’s of 

streaming data each minute.  Parts 1 and 2 are similar to the Storm information presented in this unit’s 

video material.  Part 3 is of most interest here, as it goes over the operational difficulties that Twitter 

has experienced using Storm, including Zookeeper overloads, overheads in Storm being much greater 

than Kafka creating back pressure on spouts, difficulty in tuning spouts and bolts due to deep layers of 

code, and difficulty in taking action to release back pressure at one point creating back pressure 

elsewhere. 

 

Kulkarni, S. et al. (2015). Twitter Heron: Streaming at scale. Proceedings of SIGMOD Conference. 

 

This paper from 2015, just a year after the previous paper, describes how Twitter is replacing Storm 

with Heron.  Parts 1 and 2 go over Heron, which is similar to material in the unit videos.  Part 3 is of 

interest, as it details the motivation for Heron, which is mainly the shortcoming of Storm: Worker 

limitations, Nimbus issues, Zookeeper overloads, backpressure, and efficiency issues.  Part 4 tells us 

that there really wasn’t a good alternative, so they had to develop something new.  Part 5 described 

the design of Heron and how it fixes the shortcomings of Storm.  The remaining sections of the paper 

go through production, metrics, future directions, etc. 

 

Introduction to Streaming 

 

Analytics – Discovery (ability to identify patterns in data), Communications (provThiide insights in a 

meaningful way) 

Types of Analytics – Cube analytics, Predictive analytics 

Dimensions of Analytics – Streaming, Interactive, Batch 

Streaming – ability to analyze data immediately after it is produced 

Stream Processing – analyze and act on streaming data using continuous queries  

Streaming Analytics – continuously calculate mathematical or statistical analysis on the fly 

Interactive – ability to provide results instantly when a query is posed 

Batch – ability to provide insights after several hours/days when a query is posed 

Examples: network monitoring, intelligence and surveillance, risk management, e-commerce, m-

commerce, transaction cost analysis, fraud detection, algorithmic trading, live datamart 

Stream System Requirements – processing massive amounts of streaming events, performance and 

scalability as data volume increases, real-time responsiveness to changing conditions, rapid integration 

with existing data sources, push-based visualization 

Stream Processing = Data Flow Through a DAG 

First Generation – SQL based – NIAGARA Query Engine, Stanford Stream Data Manager, Aurora Stream 

Processing Engine, Borealis Distributed Stream Processing Engine, Cayuga Stateful Event  Monitoring 

Next-Generation – Storm, Spark Streaming, Twitter Heron, S4, Samza, Pulsar 
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Storm Overview 

 

Storm – streaming platform for analyzing real-time data as it arrives, so you can react to data as it 

happens: guaranteed message processing, horizontal scalability, robust fault tolerance, concise code-

focus on login 

Storm Data Model – Topology, Spouts, Bolts 

Topology – DAG; vertices = computation; edges = streams of data tuples  

Spouts – sources of data tuples for the topology; examples: Kafka, Kestrel, MySQL, PostgreSQL 

Bolts – process incoming tuples, emit outgoing tuples; examples: filtering, aggregation, join, arbitrary 

function 

 

Storm Example – see Lab 6 – Apache Storm Introduction 

 

Storm Architecture 

 

(see slide diagrams) 

Master Node (Nimbus), Zookeeper (ZK), Slave Nodes (Supervisor process plus Worker processes) 

 

Storm Deployment 

 

Mesos – distributed systems kernel, scales out – Storm can run multiple instances on same cluster 

using Mesos – (Spark also can use Mesos) – can run outside of Hadoop 

Topology Isolation – shared pool (multiple topologies can run on the same host), isolated pool 

(dedicated set of hosts to run a single topology) 

 

Storm Issues 

 

Master Node (Nimbus) is a single point of failure 

Zookeeper (ZK) is easily susceptible to  storage contention, constantly spawning and killing processes 

Storm Workers – complex hierarchy – hard to debug (you will experience debugging in Lab 6 and 

Exercise 2) – hard to tune 

Queue contention between Spouts and/or Bolts 

Evolution vs revolution – fix storm or develop new system?   

 

Twitter Heron 

 

Full API compatible with Storm (DAG, topologies, spouts, bolts) and well known languages (C++, Java, 

Python, NO Clojure) 

Heron Design Choices 

Off-the-shelf scheduler – unmanaged (YARN, Mesos), managed (Aurora, ECS) 

Containers for resource reservation – plays nicely with Linux C group container, limit CPU and RAM 

Separation of data routing and data processing – allows multi-language data processing 

Back pressure – self-adjust the topology and provide predictability 

Batching – moves tuple faster for higher throughput 
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Topology Architecture – see slide diagrams 

Topology Master – solely responsible for entire topology (assigns roles, monitoring, metrics) 

Stream Manager – routing engine (routes tuples, back pressure, ack mgmt) 

Back Pressure Advantages – predictability (tuple failures are more deterministic), self-adjusts 

(topology goes as fast as the slowest component) 

Heron Instance Architecture – does the real work (runs one task, exposes api, collect metrics) 

 

Twitter Heron Performance / Operational Experiences – see slide diagrams 
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Unit 10 – Cleaning Data, Entity Linkage, String Clustering, and Fuzzy Methods  

for Merging Datasets 

 

Elmagarmid, A., Ipeirotis, P., & Verykios, V. (2007). Duplicate record detection: A survey. IEEE Transactions on 

Knowledge and Data Engineering, 19(1): 1–16. link Read the following sections: 1,2 3 {3.1.1,3.1.2,3.1.4,3.3.1} 4 

{4.1,4.3,4.5,4.6,4.8},5{5.1,5.2},7. The rest is optional. 

 

This paper discusses methods for detecting duplicate records, but it starts by mentioning that often duplicate 

records don’t share a common primary key and often bad data is present in duplicates.  The next section goes 

through a list of the all the common methods for fixing bad data, with various methods to match on similarity 

and differences, several of which are covered in the videos for this unit.  Having dealt with bad data, the final 

part of the paper goes through with various methods of how to detect duplicates, and closes with how to 

improve the efficiency of duplicate detection. 

 

Rahm, E., & Do, H. H. (2000). Data cleaning: Problems and current approaches. Bulletin of the IEEE Computer 

Society Technical Committee on Data Engineering. link Read the following sections: 1,2 3 

{3.1.1,3.1.2,3.1.4,3.3.1} 4 {4.1,4.3,4.5,4.6,4.8},5{5.1,5.2},7. The rest is optional. 

 
As the name implies, this paper goes through the various methods for data cleansing as it related to ETL in the 

traditional data warehouse, although the same techniques apply to big data. The hierarch of data quality 

problems, single source problems, and multisource problems match the material presented in the videos for this 

unit. The remainder of the paper presents data cleansing techniques and tools, which are similar to the modern 

tools, but dated at this point. 

 

Wang, R. Y., &. Strong, D. M. (1996). Beyond accuracy: What data quality means to data consumers. Journal of 

Management Information Systems, 12(4): 5–33. link Read the following sections: 1,2 3 5. The rest is optional. 

Read the following sections: Introduction, Preliminary Conceptual Framework ,Toward a Hierarchical 

Framework of Data Quality. The rest is optional. 

 
This paper from 1996 highlights the fact that at the time the general feeling in IT was that as long as data is 

accurate, that was all that mattered with regards to data quality.  This paper presents the results of research 

conducted by surveys of data consumers asking them what data quality attributes are most important to them.  

The first survey asked them to list quality attributes.  The second survey complied and organized the results 

from the first survey into more pointed questions.  The findings were compiled and a hierarchical framework for 

data quality was proposed. 

 

Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques, (3rd ed.). Morgan Kaufman, 

Chapter 3, pp. 83–120.Read the following sections: 3.1, 3.2, 3.3.1, 3.4.8-3.4.9 Optional : 3.3.2-3.4.7, 3.5 

 

This chapter deals with data preprocessing: data cleaning, data integration, data reduction, data transformation, 

and data discretization.  The material is very timely and relevant and is similar to the material presented in the 

unit videos.  
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Introduction 

 

Bad Data – misspellings, outliers, incorrect values, missing values, incorrect values  

Entity Linkage - entity and its associated attributes 

Type of Problems 

• Single-Source Problems 

o Schema Level – lack of integrity constraints, poor schema design, uniqueness, referential 

integrity 

o Instance Level – data entry errors, misspellings, redundancy, duplicates, contradictory 

values 

• Multi-Source Problems 

o Schema Level – heterogeneous data models and schema designs, naming conflicts, 

structural conflicts 

o Instance Level – overlapping, contradicting, and inconsistent data, inconsistent 

aggregating, inconsistent timing 

 

Defining Data Quality 

 

Entry Quality – is the record entered correctly? – check in single record sets and data streams, fixes 

can be automatic and independent 

Process Quality – was the record correct throughout the system? – check in single record sets and data 

streams, fixes can be automatic and independent 

 

Identity Quality – are similar entities resolved to be the same? – check across many datasets, fixes may 

need extra intelligence 

Integration Quality – are the data sufficiently integrated to answer relevant questions? – check in 

architecture, fixes can be costly 

Usage Quality – are the data being used correctly?  - check in the organization, fixes may be 

nontechnical 

Age Quality – are the data new enough to be trusted? 

Data Quality as a Hierarchy – Entry => Process => Identity => Integration => Usage 

 

Single Stream Issues 

 

Entry Quality – incorrect data at source 

Process Quality – incorrect data at destination 

Single Stream Quality Evaluation – SSQE – framework – determine what issues might occur in the 

data, weigh the criticality of the issues, profile the data to score quality – allows quality to be ever-

increasing standard – allows us to prioritize data-cleaning activities 

Quality Issues for Single Streams – Definitional, Incorrect, Too Soon to Tell 

Definitional – constants, definition mismatches, filler containing data, inconsistent cases, inconsistent 

data types, inconsistent null rules 

Incorrect – invalid keys, invalid values, miscellaneous, missing values, orphans, out of range 
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Too Soon to Tell – pattern exceptions, potential constants, potential defaults, potential duplicates, 

potential invalids, potential redundant values, potential unused fields, rule exceptions, unused fields  

Comparing Quality Effects – Weighting Issues – issues should be weighted in the context of the 

system, invalid or missing data are most problematic, potential issues can be weighted lower 

Accessing Quality – any issue has a possible maximum, possibilities will be cardinalities of rows, keys, 

constants, etc., discovered are results of digging through dataset looking for rule violations 

Scoring Quality – weighting issues allow us 2 views of data: raw and weighted, process helps us 

understand where issues are occurring, impact helps us understand the effect to downstream 

customers 

Ensuring Stream Quality –  

integrate quality check throughout data pipelines (pass records once and only once, enable the replay 

of records lost in transmission),  

enforce schema (applying and enforcing schema at the RPC layer can radically improve quality, 

“transaction contract” for all senders and receivers, flexible schema RPC formats help enable this: Avra, 

protocol buffers, MessagePack, etc) 

 

Missing Values 

 

We may never fully know why values are missing – we need to know how to deal with missing data 

We need to understand: relation of missing to a field (are most values missing), relation of missing to a 

group (are most missing values in column y when column x = 1?) 

Understanding missing values helps us model substitutes or unbiased estimates  

Nuclear Option: Listwise Removal – simplest approach – if record has missing value, ignore the entire 

record in analyses – only acceptable if remaining statistical power and sample size are large enough 

and removal doesn’t bias any models -  system of record, not acceptable, rest of record is useful, must 

decide a priori what is acceptable as missing, constraints important  

Softer Removal: Pairwise Removal – less extreme – if record has a missing value, ignore the record if 

and only if the missing value is in the analyzed set – in analysis this can be acceptable, use as many 

values as possible 

Inferring Values – fill in missing values – time-ordered, rules can be applied, must understand the 

potential impact – more scientific approaches that can be brought to bear 

Interpolation for Numeric Data – predict new data points in the range of a discrete set (model the 

existing values in one column as a response of other columns, for each value, predict it based on the 

available data) – Simple Linear, Splines, Kringing 

Imputation for General Data – impute using a good model (replacement of missing data with 

substitute values, unit imputation – adding a whole observation, item imputation – adding a feature of 

an observation (a column in a row)) latent variables (don’t know what mechanism generated the data, 

only know the data points it generated) 

Expectation Maximization – EM – Gaussian Mixture Models (GMMs)  (all data points including missing 

values are drawn from a mixture of normal distributions with unknown parameters, find the optimal 

mixing of distributions to generate the observed data) – Two-Step Approach (E-Step – assigns points to 

the model that best fits, M-Step – updates model parameters using assigned points, repeat until 

converged) 
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Single and Multisource 

 

Entity Resolution / Record Linkage – Match records from multiple data sources that belong to the 

same entity – problems: attributes / records not matching 100%, how to apply to different / changing 

datasets, missing values, data quality, errors, semantic relations  – core problems: normalize data, link 

records in a table, link records across tables 

Single Source Approach – normalize attribute data (find matching, replace with a normalized value), 

match records on one or more attributes (match and annotate with an identifier)  

Deterministic Method – rule-based approach: rules and record level match – scale issues: bad data in 

many rules 

Fuzzy Method – match similar values and records and attempt to determine if match, no match, or 

possible match – similarity of attribute, distance of record, match thresholds, learning  

Precision – how many selected items are relevant? 

Recall – how many relevant items are selected? 

Matching / Linkage – Structural (hierarchy or similar linkage) – Lexical (text matching) 

Structural Heterogeneity – issues: different attributes / columns, split in different tables, different 

level or normalization, nesting levels (JSON), attribute versus element (XML) 

Lexical Heterogeneity – issues: abbreviations, alternative spellings – common operations to solve: 

match, trim, split, join, slice, partition, etc. 

Edit Distance – way to measure the similarity of string attributes, quantifies how dissimilar two strings 

are to one another by counting the minimum number of operations required to transform one string 

into the other 

Levenshtein Distance – minimum number of single character edits (insert, delete, substitute) – see 

examples in the slides 

Jaro-Winkler Distance (Jaro Distance) – measure of the similarity between two strings – between 0 

and 1, must decide an appropriate threshold, 1 is exact match, 0 is no similarity – see examples in 

slides 

Other Algorithms – Hamming Distance, Damerau-Levenshtein Distance, longest common substring 

distance, cosine distance, Jaccard Distance 

 

Additional Explanation of Edit Distance and Levenshtein – see slides for additional examples 

 

Record Linkage 

 

Problems with Record Linkage – records in different data sources, no common record key, want to 

find similar records, assess similarity, create linkage using fuzzy and deterministic rules, how to 

compare whole record 

Record Linkage – normalize data, link records on a table, link records across tables  

Defining Similarity – application specific, different attributes, different angles, methods: cosine 

similarity for numeric / continuous attributes, edit distances for strings, Jaccard for binary or 

categorical values 

Processing and Storing – cleaning and identifying similar records within / across data sources can be 

computationally expensive, calculations are usually subjective and difficult to tune (store original data 
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if possible, can be costly, recalculate frequently, Hadoop and Spark have dramatically reduced 

processing times) 

 

Scaling Record Linkage 

 

Entity matching can be very computationally intensive – we need to scale 

Scale / Efficiency Issues – polynomial complexity, NM record comparisons, expensive comparison 

operations, multiple passes over data likely needed – Concerns: precision and recall, efficiency, 

processing times 

Efficiency Improvements: 

Reduce number of comparisons – blocking, sliding window, clustering, canopy 

Reduce comparison complexity – filtering: decision tree, feature selection 

Blocking – define blocking key, create blocks, compare within blocks – pros: fewer comparisons – cons: 

missed matches – option: block on multiple different attributes 

Sliding Window – create key from relevant data, sort on key, compare records in sliding window – 

pros: few comparisons – cons: sensitive to key selection – option: run multiple sliding windows in 

parallel 

Clustering – assumes similarity is transitive a=>b=>c, union-find algorithm - pros: fewer comparisons – 

cons: potentially complex computation, slightly more unpredictable 

Canopy – cluster into canopies using “cheap” algorithm, run comparison inside each canopy with more 

“expensive” algorithm, preselection – pros: fewer comparisons – cons: sensitivity to key selection, 

missed matches 

Big Data Solutions – scale out, process large datasets faster, save original data which makes algorithms 

better 

 

Ontologies and Semantics 

 

Ontologies – modeling of a system (entities, relationships, events that may change entities or 

relationships, axioms or rules the define what can happen) – Greek “the study of being or reality” – 

models can be: small, limited domains (ERDs) or large, global semantics (Semantic Web)  

Semantic Web – seeks to link all entities and relationships on the web to a global ontology 

Web Ontology Language – OWL – markup language, applies ontology onto any object with a URI 

Resource Description Framework – RDF – framework for constructing an ontology as a graph 

Knowledge Bases – attempts at capturing some semantic model of the world, in limited form with 

limited data, examples: one stop semantic models: Google Knowledge Graph API, Wikidata, DBPedia – 

can provide a common root for entity resolution since construction of a semantic web would amount 

to a significant data quality problem 
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Unit 11 – Graph Models and Analysis 

 

Amaral, L. A. N., Scala, A., Barthelemy, M., & Stanley, H. E. (2000). Classes of small -world networks. Procedures 

of the National Academy of Science, 97, 11149–11152. 

 

This paper looks at a diversity of real-world networks, including such things as an electric power grid, movie 

actor collaborations, neurons in a worm, world wide web, scientific papers, air traffic routes, a religious group, 

junior high school friendships, etc.  The research led them to conclude that networks can be grouped into three 

classes: scale-free networks, broad-scale networks, and single-scale networks.  The grouping consider such 

things as how edges decay over time, addition of new edges, etc.  Power law is the relationship between two 

quantities such that one is proportional to a fixed power of the other.   

 

Liljeros, F., Edling, C. R., Amaral, L. A. N., Stanley, H. E., & Aberg, Y. (2001). The web of human sexual contacts. 

Nature, 411: 907–908. 

 
No comment 

 

Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National 

Academy of Science, 98: 404–409. 

 
This paper is similar to the first paper, but it limited its investigation to the study of scientific published papers 

and their authors and collaborators.  Each scientist would be a vertex and edges would be added for every 

scientist who was a co-author or collaborator.  The graph analysis grouped scientists by discipline and compared 

and contrasted.  

 

Introduction: Defining Graphs 

 

Data that defines a graph (or network) presents special challenges: data are inherently related, 

structural measures are of particular interest, inference or path finding is also of interest – tabular 

questions well suited to SQL like tools, connectivity questions more suited to a graph 

Graph G (V, E) consists of:  

V – a set of vertices 

E – a set of edges, which must connect two vertices, may be directed or undirected 

 

Graph Measures 

 

Size of a Graph - Number of Edges 

Order of a Graph - Number of Vertices 

Diameter of a Graph - longest shortest path in the graph 

Components – subgraphs not connected to the rest of the super graph 

Degree of a Vertex – edge count: in-degree -number of incoming edges, out-degree – number of 

outgoing edges 

Eccentricity – longest shortest path from any node to all other nodes 

Connected Components – undirected graph (connected components), directed graph (weakly 

connected components), strongly connected components – all nodes in the component must be 
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reachable by all other nodes – most graph analyses focus on the “giant” component (largest weakly 

connected component) 

 

Path Finding 

 

Path Finding – find shortest (weighted) path between two nodes, fundamental to variety of measures 

(eccentricity, betweenness, diameter), all shortest paths from given node make a spanning tree 

Dijkstra’s Algorithm –  

• Assign initial distance to all nodes 

o 0 to source 

o Infinity to all others 

• Until all paths to destination have been explored 

o Create set of unvisited nodes 

o For all neighbors of particular node, compute new distance 

o Remove them from set of unvisited nodes 

o Compute new shortest path 

Dijkstra vs. Bellman-Ford 

Dijkstra – naively O(/V/^2) – with min-heap O(/E/ + /V/ log /V/) – fastest algorithm for non-negative 

edge weights, basis of link-state routing protocols 

Bellman-Ford – O (/E/ + /V/) – handles negative weights – scales poorly – basis of distance-vector 

routing protocols 

Spanning Trees – given an undirected graph G(V,E) – spanning tree T is a subgraph G such that all 

vertices are reachable for any other vertex and there exists only one path between 2 vertices  

Minimum Spanning Tree – Spanning Tree with minimum total distance – analogous to routing table 

 

Ranking and Centralities 

 

Rank of a Graph 

undirected = /V/ - /components/ 

directed = cycle rank or distance form directed acyclic graph 

PageRank of a Node - Measure of relative importance of nodes, Metric is heart of web search, though 

much as changed – low cost proxy for centrality – vertex importance is influenced by the importance of 

its neighbors 

Centrality – how important is a vertex to a graph – kinds: degree, closeness, betweenness, Eigenvector 

Degree Centrality – how many edges a given vertex has 

Closeness Centrality – inverse distance between a vertex and all other vertices 

Betweenness Centrality – how many shortest paths include a given vertex 

Eigenvector Centrality – components of largest Eigenvectors of G’s adjacency matrix – valuable but 

expensive 
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Communities 

 

Community – group of closely connected nodes 

Nonoverlapping Community - set of nodes with dense intergroup connections, sparse intragroup 

connections 

Community structures suggest real-world significance – comic book universes or superhero teams – 

metabolic networks, evolutionally conserved functions, citation networks, research publications 

Community Analysis – methods: hierarchical clustering, min-cut, random partitioning to modularity 

max, label propagation – not all approaches will scale, not all are stable, choose method based on 

speed vs fidelity, graph size 

Bipartite Graphs (k-Partite) – graphs with multiple vertex types – allow us to address more complex 

questions (example: shortest path from user to product) 

 

Storing Graphs 

 

Markup languages: Graph ML, GML, GraphSON 

Adjacency Matrix – make a V x V size matrix, set the cell to non-zero if an edge exists, zero if no edge  

Sparse Matrix – matrix with a lot of zeros or empty cells  

RDBMS – storing a graph in RDBMS not very efficient on path finding as it requires recursive lookups – 

make a table with 3 columns and only insert a row if an edge exists  

Columnar Database – better for storing sparse matrix 
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Unit 12 – Serving Data 

 

Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques, (3rd ed.). Morgan Kaufman, 

Chapter 5, pp. 187–194, 210-218.Read the following sections: 5.1 Optional : 5.2- 5.5 

 

This chapter covers the Data Cube aka OLAP Cubes.  It is very relevant and timely information.  We actually 

cover data cubes in the next unit, but the readings are assigned on unit 12 to he lp free up student time at the 

end of the semester when project work is busy. 

 

Allen, B., Bresnahan, J., Childers, L., Foster, I., Kandaswamy, G., Kettimuthu, R., Kordas, J., Link, M., Martin, S., 

Pickett, K., & Tuecke, S. (2012). Software as a service for data scientists. Communications of the ACM, 55(2). 

 

This article explains the benefits in general of Software as a Service for Data Scientists.  It then goes into the 

specifics of Globus Online (GO) which is a service to automate and scale transfers of large datasets to cloud 

services such as Amazon Web Services (AWS).   

 

Why Serve Data? 

 

We need to serve data because data in isolation does not propel research or the business forward 

Business stakeholders – dashboards, reports 

Partner organizations – dashboards or APIs 

Production applications – APIs, models, result sets 

Other data scientists – Web, Jupyter Notebooks, etc. 

Who is the consumer? Human – web, download, mobile, static or dynamic – Machine – fixed or ad 

hoc? What API?  What format? What is the scale?  Simultaneous consumers? How much data is 

processed? How much data is served per request? 

 

Reporting 

 

Storage and retrieval system facilitate two things: application persistence and reporting  

Reporting - the presentation of data to support business decision making – more accounting than 

science - accounting can be complicated – Business Intelligence (BI) tools 

Business Intelligence Tools - BI Tools – used by non-data scientists to report to non-data scientists – BI 

servers 

Visual Reporting Tools: Tableau, MicroStrategy, Cognos, Pentaho, Spotfire 

Do it yourself: HTML5, d3, APIs 

 

Datasets as a Service 

 

Datasets are increasingly provided as a service to other systems 

Driver-based serving – example ODBC – Pros: leverages known drivers, consumer access control can 

be fine grained – Cons: consumer access control may require lots of attention, consumer may do 

unexpected things to the system 
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RESTful serving – useful in service oriented architectures – Pros: API serves only known shapes of data 

(simpler) – Cons: may require building serving layers on top of storage layer –  

example: OData – request a whole dataset, request a specific record, query a dataset, write data, call 

functions 

 

In-Application Analytics 

 

Functions of In-Application Analytics – present statistics, analytics, recommend content, adapt 

features to behavior, detect patterns, recognize information, auto-label 

Examples: Consumer – Twitter, Uber, Facebook, Shopping, eBay 

B2B – marketing, sales, support, advertising 

New Features and User Experiences – enabled by analytics and machine learning, to improve user 

experience through personalization 

Engagement – personalized content, timely new content every time a user engages, creating interest 

to pull users in, presenting results to end users at scale 

Layers – Analytics Processing => Serving Layer => Applications 

 

Serving at Scale 

 

Scaling the serving layer is very different from scaling the analytics layer – beneficial to think of them 

and architect them differently 

Measures – transactions per second, queries per second (QPS), latency, response time, throughput, 

concurrency 

Distributing Data Storage – Data Sharding (horizontal partitioning, distributing rows among nodes), 

Vertical Partitioning (dividing columns among nodes) 

Caching Data – storing data in memory – application will check cache for data first, if not found, will 

retrieve from database and store in cache – issues: personalization (each users has unique set of data), 

streaming/real-time updates (data updated continuously, caches frequently invalidated) 

Distributing Applications – application servers distributed among nodes 

Distributing Static Content – Content Delivery Network – CDN – currently used by all major websites, 

large distributed system of servers deployed in multiple data centers across the world, improves 

availability and performance by pushing data to the edges (close to end users) 

Load Balancers – evenly distribute a work load among nodes 
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Unit 13 – Advanced Topics 

 

ML Pipeline 

 

Pipelines allow us to focus on model building and evaluation – ML tasks often involve significant data 

transformation – pipelines are a good candidate for dataflow languages  

Transformations are often not well represented in general purpose domain specific languages (DSLs) – 

vectorization, normalizing, whitening, nonstandard transformations, imputation, interpolation 

Feature Extraction – consider the standard process for building bag of words model – nontrivial: 

language specific processing, tuple extraction, vectorization – needs to be repeatable: many different 

dataset, corpuses, modeling methods 

Feature Unionization – consider a high-dimensional dataset – good features may come from different 

extraction methods (PCA, maximum linear contrast) – we would like to quickly assemble features from 

many methods 

Grid Searches – often need to cross-validate and to search a space of hyperparameters (time 

consuming when done by hand) – ML pipelines allow us to search more effectively (assemble a 

pipeline, apply a grid search to the parameter space) – simpler more consistent cross-validation – more 

automated approach to finding best fits  

 

Mining Streams 

 

Background Streams vs Database – stream data arrives on its own schedule, database processes know 

what data they have, different streams arrive at different rates, main constraint with streams is that 

they need to fit into main memory (how can we filter and sample within memory constraints)  

Sampling Streams – example: large data stream that cannot permanently be kept in memory (must be 

able to query representative sample of stream for accurate answers), stream of even with tuples {user, 

event, timestamp} (there can be multiple occurrences of the same event, we like to query the fraction 

of events repeated over the last month, we can keep only 10% of stream’s data in memory) 

Straightforward Approach – randomly sample 1 of 10 events – does not work – we cannot take a 

sample of each user’s queries, we have to sample users and get each user’s complete history – 

problem: if we have a lot of users, filtering may take up a lot of memory – solution: use hashing, have 

username to sample and no sample buckets 

Bloom Filter 

Array of m bits (all set to 0, must be k different hash functions define, each which maps or hashes some 

set element to one of the m array positions) 

To add an element, apply each of the k hash function to get k array positions.  Set the bits at all these 

positions to 1 

To query an element (test whether it is in the set), apply each of the k hash functions to get k array 

positions (if any of the bits are these positions is 0, the element is not set – if all are 1, the element is in 

the set or the bits have by chance been set to 1 during the insertion of other elements, resulting in a 

false positive – false negatives are not possible) 

 

  



UCB W205 Asynchronous Notes  Page 38 of 38 

Data Cubes 

 

Business problem – aggregate business data so that it can be analyzed and queried, get overview, drill 

down for detail, etc.  

(see slide diagrams of cubes and operations) 

Data Cube – facts (quantitative data) goes inside the cube, dimensions go on the edges –  

Slicing – pick one value alone one dimension, creating a cube with one fewer dimensions  

Dicing – pick specific values along multiple dimensions, creating a smaller cube (slice is a special case of 

a dice) 

Drill Down, Drill Down, Roll Up – change the level of granularity along a dimension 

Pivoting – rotation of a cube for presentation of different views of the data 

Technical Problems  

If we have time series data, how can we quickly query and explore multi-dimensional aggregates? 

How do you compute cubes in an efficient way? (applications can take > 24 hours, not normally 

distributed, no scale out) 

What are the scale issues with data cubes? (processing time, memory limitations) 

MOLAP – data stored in multidimensional array, good performance, precomputed, proprietary query 

language and structures 

ROLAP – data stored in relational database, performance depends on underlying query, generally 

slower than MOLAP, can be partially materialized and partially dynamic computation 

Cuboid – a data cube can be viewed as a lattice of cuboids 

Computation of Data Cubes - full cube computation of n-dimension cube requires 2^n cuboids thus 

very expensive 

Solutions: only compute cuboids that will be used, only compute cuboids satisfying a defined 

threshold, compute a set of cuboids from which you can create other cuboids in real time 

Iceberg Cubes – contain only those cells of the data cube that meet an aggregate condition, aggregate 

condition could be: minimum support or lower bound on average, min, or max, purpose is to identify 

and compute only values that will most likely be required for decision support queries  

Pros: computation can be reduced, storage can be reduced 

Cons: some queries cannot be answered, difficult to find and identify right threshold, incremental 

updates are costly (re-compute required) 

Cube Shell and Shell Fragments 

Assumption – most queries are in a subset of the dimensions 

Idea – compute a cube shell of all cuboids of a dimension less than the full cube 

Shell Fragments - Cube shells still very expensive, many cuboids to calculate, narrow down to most 

likely cuboids, certain dimensions never used together, shell fragment is a shell cuboid with fixed 

dimensions – have a fragment-aware query engine that disallows unsupported queries or generates 

background processing – common queries answered quickly, uncommon queries must be calculated 

Pros: can trade offline and online processing 

Cons: identify the right fragments 

 

 

 

 


